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Abstract 

The longitudinal. d r i f t  ve loc i ty  

trapped i n  the  e a r t h ' s  f i e l d  is  considered. It is  shown 

that there i s  a r e l a t ion  between d r i f t  ve loc i t i e s  a t  di?- 

ferent  points on any l i n e  of force and t h a t  the  d r i f t  

ve loc i t ies  of pa r t i c l e s  with d i f f e r ing  mirror points a r e  
' 

a l so  related.  These r e l a t ions  can be used t o  s k q l i f y  

the  calculat ion of t he  average e f f e c t s  of t he  atmosphere. 
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In t radce t  i o n  

Newkirk and Walt (1964) have shown t'hat the  longi tudinal  d r i f t  

velocity,  of trapped pa r t i c l e s  moving i n  t h e  earth 's  f i e ld ,  var ies  

appreciably w i t h  l a t i t u d e  and longitude. The calculat ion of d r i f t  . 

veloci ty  is  important i n  calculat ing the  e f f e c t s  of the atmosphere 

on the  pa r t i c l e s .  I n  t h i s  paper it is shown that the d r i f t  ve loc i ty  of 

a p a r t i c l e  with a given mirror point,  is related i n  a simple way t o  

the  d r i f t  ve loc i ty  a t  t he  equator. The d r i f t  ve loc i t i e s  a t  the  equator 

f o r  p a r t i c l e s  with d i f fe ren t  mirror points,  are a l s o  related; t h e  

r e l a t ion  is  given i n  terms of known functions. These r e s u l t s  consider- 

ably simplify t h e  integrations which are necessary t o  compute average 

e f f e c t s  of t h e  atmosphere. 

Ray (1963), Mort'nrop and T e l l e r  (1960) and others,  have made use - - 
of a coordinate representation (a, 8)  i n  which 5 = v cr x v  8. It is 

shown t h a t  t h e  d r i f t  velocity r e s u l t s  imply a convenient representat ion 

of a and 8. If fy i s  taken t o  be J, where J i s  the  usual  i n t eg ra l  

irivariant, then B i s  related t o  the t i m e  it takes f o r  a p a r t i c l e  t o  

d r i f t  i n  longitude. 

D r i f t  Velocity Calculations for Fixed Bn 

A formula for  the instantaneons d r i f t  ve loc i ty  has been given by 

various authors. Lew (1961) shows t'hat i n  a c u r l  free f i e l d  
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where mY is  the mass of the  pa r t i c l e  and e is  i ts  charge: 

are the components of v 

vL and v 

(the veloci ty)  perpendicular t o  and p a r a l l e l  
// 

t o  the l ine  of force: 'i; 

magnetic f i e l d  l i n e .  

is a un i t  vector along the  binormal t o  the  
> 

We w i l l  use the  convention that if 2 is any vector 
I 

then x 

1 
B B  

~ P 

D D1 

Qk 
Figure 1. Two neighboring l ines of force AB, CD and 

the associated p a h i c l e  paths AB' and CD' 

denotes the magnitude of 5. Northrop and Te l l e r  (1960) show that 

equation (1) can be integrated over a l a t i t u d i n a l  bounce t o  give - 
J x B  C - 

u =  
eB2T 

d 

- 
where ud is vd averaged over one bounce, and T i s  the  bounce period. 
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J is  the  in t eg ra l  invariant  

J =  ds ( 3 )  
where ds i s  an  a rc  length along t h e  l i n e  of force,  and p,, is the 

component of the  momentum along the  l i n e  of force.  Newkirk and W a l t  

(1964) have used formula (2) t o  compute Gd a t  various longitudes f o r  

various values of B the  mirror point B. m' 
It has been pointed out by McIlwain (pr iva te  communication) that 

the re  i s  a r e l a t ion  between 

Suppose the  p a r t i c l e  is a t  point A at  time zero. 

of force through A (See Figure 1). 

at various points  on the  l i n e  of force.  a 
AB denotes the  l i n e  

The p a r t i c l e  d r i f t s  away from the  

l i n e  of force,  l e t  AB' denote the ac tua l  path of t he  p a r t i c l e :  t h e  

difference be3ween AB and AB' represents the e f f e c t s  of instantaneous 

d r i f t .  

def i n i t i o n  

Af te r  several bounce periods l e t  the p a r t i c l e  reach point C, by 

- 
(4) ud (A) = AC/T (AC) 

where T (AC) denotes the  time t o  go from A t o  C. 

of force through C and l e t  CD' be the path of t h e  pa r t i c l e .  

the  same p a r t i c l e  a t  different  a point  on  i ts  path. 

on AB' and l e t  Q' be the corresponding point  ( the  point with the  same 

L e t  CD denote the  l i n e  

Consider 

L e t  P' be any point  
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We now make two approximations, namely 

PQ = P'Q' 

and 

T(AC) = T(AC) - T(AP') + T(CQ') 

From equations (4) through (6) 

. .  

that is, t he  d r i f t  ve loc i ty  a t  any point is  proport ional  t o  the  spread 

of the  l i n e s  of force. This is the main r e s u l t  of t h i s  section. We 

have made two approximations, (6a) and (6b), but  i n  addi t ion T(AC) should 

be short  enough so that ud does not change during the period T(AC). 

the  d r i f t  period is much longer than the  bounce period, hence w e  can 

make T(AC) >> T(AB) without any lo s s  of accuracy, thus (6a) and (6b) are 

accurate t o  second order. 

Now 

1 

To i l l u s t r a t e  these r e s u l t s  consider a p a r t i c u l a r  l i n e  o2>. force; 

i n  any r e su l t s  r e l a t i n g  t o  the  e a r t h ' s  f ie ld  we have used t h e  Jensen 

and Cain (1962) 48 term spherical  harmonic expansion. The geographic 

coordinates of points  on two neighboring l i n e s  of force  with L = 1.25 a r e  

shown i n  Table 1. 
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TAX22 1 

R 6 Q a 

Point >. 1.114219 2.086164 5.1k0538 0.19732 

B 1.159360 1.E22298 5.134288 0.19732 

c 1.093869 2.088672 5.335743 0.19732 

I) 1.151725 1.622954 5.276995 0.19732 

Where R is  i n  e a r t h  radii and 8, 1 a r e  i n  radians. We f i n d  t h a t  

AC - .188208 = 1.140 - Ud (A) - - 
BD .165111 

It is sometimes convenient t o  use i t h e  angular d r i f t  velocity;  project-  

ing equation (7) along the  d i rec t ion  d4 gives 
/ 

T h i s  checks w i t h  t he  r e su l t s  given by Newkirk and Walt (1964) i n  

t h e i r  p l o t s  of 6 against  0. The difference between i a t  the northern 

and southern ends of the l i n e  of force is due t o  two fac tors .  

f a c t o r  is  the  spread of t he  l i nes  of force.  

change i n  dx/d$ where dx is  a distance measured i n  the  d i r ec t ion  AC. 

Welch, e t  al, (1963) have a graph 

One 

The o ther  f a c t o r  i s  the  

of t h e  va r i a t ion  of mirror  point 

heigbt as 9 is varied: the  slope of t h i s  graph i s  approximately dx/di. 
I 

This graph shows that dx/d4 can d i f f e r  appreciably from the  northern 

t o  the  southern mirror point.  
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A Canonical Coordinate System 

Ray (1963) has discussed a coordinate system (CY, a )  such t h a t  

and such t h a t  CY and $ 

and Te l l e r  (1960) used t h i s  coordinate system i n  der iving an expression 

f o r  t he  d r i f t  velocity.  

is  constant along a l i n e  of force may be Chosen as CY, and that l3 i s  

then determined. 

a re  constant along a l i n e  of force.  Northrop 

Ray (1963) showed that any f'unction which 

If Y is  any o ther  quant i ty  which i s  constant along 

a l i n e  of force then 

B dY a = $  
vCYx :v, ( 9 )  

- 
where the path 

2ath 

of in tegra t ion  i n  the  d i r ec t ion  5 X va. Consider t he  

of in tegra t ion  and l e t  d X  denote an element of t h i s  pa th  then 

dB B 

L e t  us now choose CY t o  be equal t o  J f o r  a f ixed Bmo 
distance i n  t h e  d i r ec t ion  3 X vCY, that is it is i n  t h e  d i r ec t ion  of 
average drif't. 

Then dx denotes a 

Using equation (2), and the f a c t  t h a t  V J  i s  perpendi- 
cu la r  t o  5, 

.dX e u  T 
- d  - =  

d@ ' C  
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S i x e  3 i s  constant clorig a L n e  of force, thls equation is  similar t o  

-;?.e r e s x l t  2erlveZ i n  zhe p-ezeedlng sectior.. 

c i ~  aad dx i s  the  se2aration of the l i n e s  of force massre2 i n  the  direc- 

2.T is ?rogomi-or& ',o 
ci 

i l  u ~ o s  Li X '$2. It is  possible t o  give a maning t o  B; since t h e  d r i f t  

ve loc i ty  is  dx/dt, it I'ollows tha t  

s o  t h a t  B i s  t h e  time taken t o  d r i f t  f r o n  some reference l i n e ,  measured 

i n  u n i t s  of eT/c. The def in i t ion  ( lob)  i s  exact; it does not contain any 

a2proximation. This a n d y s i s  shows t h a t  there are an i n l i n i t e  mmber of 

 CY,^ coordinate systems. Par t ic les  w i t h  d i f f e r e n t  values of B l i e  on m 
di f fe ren t  she l l s ;  t h e  above results show t h a t  there  i s  a coordinate sys- 

tem appropriate t o  each value of . On any s h e l l ,  i f  B is  taken t o  Bm m 
'mve t h e  value 4.85M/I 3 , where M is  t h e  dipole magnetic moment of t h e  

ea r th ,  then I is equal t o  t h e  L defined by McIlwain (1961). I n  the 

neighborhood of any s h e l l  we can choose the coordinates so that  cy = L; 

hawever, t h i s  agreement does not hold f o r  o ther  shells since S must be 

kept constant. 

m 

The D r i f t  Velocity and Calculation of an Average Atmosphere 

Consider a p a r t i c l e  with a c e r t a i n  value of Bm and a c e r t a i n  

energy. 

cesses are ignored, stay on a c e r t a i n  s h e l l  which is  defined by Bm and 

by J, t h e  i n t e g r a l  invariant. '  Let p 6 )  be some property of t h e  atmos- 

phere, f o r  example p might be the concentration of oxygen at 7. 

It is known that t h e  p a r t i c l e  w i l l ,  i f  sca t te r ing  and l o s s  pro- 

The 
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average of p as seen by a trapped p a r t i c l e  i s  

'a, = / s (1) 

where S(P) = ss 

We have shown i n  t he  previous sec t ion  t h a t  d $ / $ i s  independent of 6 ,  

hence S( p )  is separable 

where 
.- . 

The subscript  

w i t h  label #. 
on ds denotes that in tegra t ion  is  along the  l i n e  of force  

When evaluating (13), d # / (d can be taken at any point  on 

the l i n e  of force; a convenient point  t o  use i s  t h e  geomagnetic equator. 

The numerical ca lcu la t ion  of 7 can be -performed as follows: Choose m a y  

l i n e s  of force. Evaluate the  i n t e g r a l  of equation (14) f o r  each l i n e  of 

force.  

lar  d r i f t  veloci ty  a t  that point. 

Find the  geomagnetic equator on each l i n e  of force  and the angu- 

Finally,  perform t h e  in tegra t ion  (13). 

Relation between D r i f t  Veloci t ies  with Different  % 

We have shown t h a t  t he  average d r i f t  ve loc i ty  a t  any point i s  

related, i n  a simple geometrical. fashion, t o  t h e  d r i f t  ve loc i ty  at  t h e  

equator. It would therefore  be advantageous t o  be able  t o  compute ud at 
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"hs equator I n  a sixiple fashion. 

e q a t o r  we hhve fi-om equation (1) 

For pa r t i c l e s  which mirror at  the  

2 2  Bm = Bo + a Sm 

The bounce time f o r t h e  pa r t i c l e s  is 

d U d V 
2 

X i Y C Y b V  

2 e B  

where N i s  t'he cm-vature of t he  l i n e  of force. 

The best way of computing H is t o  use the  r e l a t ion  given by Lew 

(1961). If and < denote uni t  vectors along the  tangent and normal, 

then 

e aB + r.n - 
z -  

grad B 
B B T  

which, at  the  equator reduced t o  

We can compare equation (2) and equation (13) f o r  p a r t i c l e s  mirroring 

near the  equator. For points near the equator l e t  

2 2  2 d2 B B = Bo + a s where a = ST (17) 
2d S 

and Bo is B a t  t h e  eqxator. 

point, then 

Let Sm denote the  dis tance t o  the mirror 
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putt ing s = s i n  8 reduces the  i n t e g r a l  t o  a simple form and 

2 
V a  

T = -  

Applying the  same transformation t o  J gives 

hence d i f f e ren t i a t ing  w i t h  Bm f ixed 

put t ing Bm = Bo f o r  p a r t i c l e s  at  t h e  equator, 

- v p c n  L V J  = - C - p v  V B  = 
e B T  e B  2 B 2 e B  

which i s  ident ica l  w i t h  (15). 

To compute the d r i f t  ve loc i ty  at the  equator, of p a r t i c l e s  which 

do not mirror a t  the  equator, . . z  can proceed as follows: 

has shown t h a t  a ce r t a in  quantity,  which h e - c a l l s  L, is  almost constant 

along a l i n e  of force, and that there  is  a r e l a t i o n  between J and B, 

namely, 

McIlwain (1961) 

L 3 B  M = (+I 
where I = J / 22, ?E; is the  dipole  moment of the Earth and F i s  a funct ion 

given by McIlwain. 
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L = (X/Bo) 
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The i q l i c a t i o n  oi? equations (22) and (23) is  t h a t  i f  we know Bo 

t k n  we csn f i n d  L, an& assuming L i s  ccnstant along the  l i n e  of force,  

c m  f i n d  I f o r  any point 011 the l i n e  of force,  thus I is  t h e  so lu t ion  

oI' t h e  equation 

To f i n d  I we could proceed as follows: Find I f o r  the  equator ia l  

value Bo, f ir ,d I f o r  eqmkor i a l  value Bo + h B, the,n I is t he  

c iCerence  of the  1's divided by h. Actually it i s  not necessary t o  do 

t h i s  ca lcu la t ion  because t h e  r a t i o  of a t  one Bm value t o  t h e  r a t i o  

of I at  another Bm value i s  almost independent of longitude. We can 

see this 2s follows. ml 

invar ian ts  I and I + 6 I. 

separat ion of these two she l l s .  

take a p a r t i c l e  whose mirror point B d u e  is  equal t o  3 

i n t e g r a l  invariant  znd denote the result by I*. 

t h e  I + 6 I she l l s ,  denote t h e  r e s u l t  by I* + 6 I*. The I f o r  t h e  

I 

For a given B t ake  two s h e l l s  with i n t e g r a l  

I a t  any point  i s  proport ional  t o  t h e  

Consider a l i n e  of force on the  I she l l s ,  

evaluate i t s  ra2' 

Take a s imi l a r  l i n e  on 

second parLicle i s  proportional t o  t h e  separat ion of t he  s h e l l s  I* and 

I-* + 6 I*. 

t h a t  they w i l l  coincide a t  all l i n e s  of force; s imilar ly ,  f o r  t h e  

I + 6 I and I* + 6 I* she l l s .  Thus v I f o r  t he  second pa:*icle is pro- 

gor t iona l  t o  the  separat ion of  I* and I* + 6 I*, which is  the  s m e  as t h e  

The s h e l l s  I and I* coincide at  one l i n e  of force,  we assume 
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separation of  I and I + 5 I, and th i s  i s  proport ional  t o  

f i rs t  pa r t i c l e ,  thus 

I f o r  t h e  

We have made the  assumption t h a t  s h e l l s  which coincide along one l i n e  

of force  w i l l  always coincide. We could have taken t h e  a l t e r n a t i v e  . 

assumption t h a t  L is  constant along a l i n e  of  force; t h i s  a c t u a l l y  leads 

t o  a s imilar  r e su l t .  For  f ixed Bm l e t  us write (24) i n  the form 

and l e t  

Bo f h v Bo =I f (I + S I )  = f (I) + 6 I f ’  (I) (26b) 

then 

Using McIlwain’s equation (7) w e  f i nd  

- B,V Bo “ I  

G (Bnl- Bo) BO 
V I =  

where 

6 n - 1  G = 3 C n a n x  
’I 
l. 

a2 and an and x are defined by McIlwain. For 2oints  near the  eQuator 

through a are  zero  and al = .333338. (We use the  Improved values of 6 
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EqGation (25) checks w i t h  equation (19)  a t  t h e  equator: 

s t su ld  be va l id  f o r  a l l  Bm. 

(15) ar,d (16), t he  d r i f t  a t  the  equator i s  

equation (28) 

Collecting toge ther  equations (2), (28), 

 rere re ud(B) r e f e r s  t o  p a r t i c l e s  mirroring a t  the  point  B. 

For many calculat ions we a re  on ly  i n k - s t e d  i n  the  

from equation (30) va r i a t ion  of u w i t h  # where I, v and B a re  fixed: 

considered as a funct ion of 

rn 

# 

Ud (Bo) 
(Bm-Bo) T (31) ud(Bm) = a constant t i m e s  

wnere T is the  bounce period. 

equator, equation (20) shows that  T(Bm - Bo). i s  constant; f o r  higher 

values of BE it can be shown that T(Bm - Bo) w i l l  vary with longitude. 

For p a r t i c l e s  which mirror  near the  

- 
The results a r e  i l l u s t r a t e d  i n  Figure 2. One carve represents  # c 

f o r  a p a r t i c l e  mirroring a t  t h e  geomagnetic equator; t he  p a r t i c u l a r  

eqcator considered here has B = .1596 gauss, t ha t  is  L = 1.25. 

curve was compted from equations (15) 3rd (16: and has been normalized 

so t h a t  i t s  average value is unity. 

'J" -'" %J 

- .- hf/--; &*>.---? 

I ~ i iL-.- 

-_ -- 
. I  

This f i rs t  
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The second curve represents the  r a t i o  

normalized t o  an average value of unity.  

geomagnetic equator using the  equation ( 2 ) :  

(corresponding t o  a minimum height of 250 km) and Bo w a s  .1596 gauss. 

Since E and B m were held fixed, I varies  by about 2$ as @ was varied. 

According t o  equation ( 3 0 ) ,  t he  r a t i o  f (  # ) should be constant, 

can be seen t h a t  f var ies  by l e s s  than 2%. 

Bm' 

age value. 

ua(Bm) w a s  evaluated a t  the 

Bm was taken as .22 gauss 

0 

It 

For t h i s  value of L and 

the  d r i f t  at the mirror point var ies  from e 8  t o  1.2 times i t s  aver- 

A similar calculat ionfor  t he  L = 1.9, wi%h Bm again equal t o  .22, 

gave f ( QI ) varying from .986 t o  1.016 times i t s  average value. 

Conclusion 

There a re  three conclusions. ud the  average d r i f t  ve loc i ty  var ies  

along a l i n e  of force,  the  var ia t ion  i s  proportional t o  the  s p a t i a l  sepa- 

ra t ion  of l i nes  i n  the  same J she l l .  

var ies  when Bm, t h e  mirror point B, is  varied; however, the  r a t i o  of 

u 's f o r  two values of Bm is  almost independent of changes i n  longitude. 

These relat ions among the  u d 's make i% possible t o  compute ud a t  any 

point by a re la t ive ly  simple calculation; they a l s o  considerably simplify 

u at  the  geomagrie-;ic equator 
d .  

d 

the  calculat ion of average atmospheres. 

c 
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F i s r e  1. Two neighboricg l i n e s  of force  AB, CD and the  associated 

F ig i r e  2. An,aular d r i f t  a t  the  ecpator for a p a r t i c l e  w i t h  1 = 1.25, 

compared w i t h  the r a t i o  of ( d r i f t  a t  the equator of p a r t i c l e  

w i t h  Bm = .22) / ( d r i f t  of p a r t i c l e  w i t h  Bm = ,Bo). Both 

curves a r e  normalized t o  an average value of uni ty .  
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